If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x+3x^2=0
a = 3; b = 17; c = 0;
Δ = b2-4ac
Δ = 172-4·3·0
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-17}{2*3}=\frac{-34}{6} =-5+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+17}{2*3}=\frac{0}{6} =0 $
| 4(5x-4=-56 | | 0.75x-2x=9+0.6x-0.5x | | x+0.2=3x+1.4 | | 4(2x)+1=2x+2-5(1-4x) | | 20+2x+6=9x | | 13=145-11x | | (25x-5)+(0.2x-2.7x)+0.5x=6.5 | | 19-(2-5x)=3x+(8-4x) | | 2^(3x+1)-3.2^(x+1)=2^x. | | (2+5.7x)+(18.2-0.855x)+3.45x=36.79 | | 2n+7=2.3 | | 10x²+78x+144=0 | | 2n+7/3=7 | | =72x+73 | | 4x+12=2(3x-5) | | 3(m+6)=12 | | x^2-34x+16=0 | | 2n/3+4=10 | | 2x+x/28=57 | | 0=-4.9t^2+4.25t+100 | | 0=-4.9t2+4.25t+100 | | 13y=15+5 | | 18,d*27,4E=512,754 | | 4(2x-5)=36 | | 2n^2+n-112=0 | | 2^(3x+1)-3.2^(x+1)=2^x | | n/18=7/12 | | 0.1x+0.3x+2/0.5=0.5 | | 7x-2.x^2=8 | | P2+10p+15=0 | | 0.05x^2-0.9x+2=0 | | 0=-5t^2+5t+10 |